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Abstract

‘] ’he Near Earth Asteroid ttendezvous  (N F; AR) Inission spacecraf~  will arriv(; at Asteroid 433 F,ros

in February, 1999. l’ollowing  an initial period of characterizat Ion, the scienc{ phase of the mission will

commence, and unprecedented inforn~ation  concerning an &steroid’s shape, mass, density, composition and
rotational dynamics will be sent to }larth  for analysis. It will also mark  the start of orbital operations
about the most cotnplex  and irregular gravity field ever encountered ill the history of space exploration.
‘1’IIe severity of ltros’  distortion fron~ the usual  spheroid bodies cmcountrmd  in planetary exploration leads
to fundamental differences in the  orbital dynamics about it. Operations atrout Erc,s will also serve as an

exciting test of orbit determination and prediction in an orbital environment which can be chaotic in some
instances. “]’his paper reviews the expected orbital dynamic en! ironment  of thf NKAR spacecraft at F~ros,
discusses the problem of orbit control of the Nl~AR spacecraft 01 bit and presents the nominal mission plan.

Thc dynamical environment may be difl’erentiated  according to whether the  spacecraft is close to or
far from Eros. When far from Eros, the spacecraft nlust  Contf’nd  with the solar  tic{e and solar radiation
pressure (SR}’) which arc large perturbations tc, the Eros attractive force. When close to Eros, t}le spacecraft

must contend with the potentially irregular gravity ft~:kl of t}le body- III this situation, there are potential
orbits which are quite  unstable and may cra.~h onto tll~ a-+moifl surface in a nlattcr of days. Obviously, it
is important to understand wl(en and where SUCII  orbits exist, a](d how they may be avoided.

There arc a number of mission specific constraints which the NFAR  spacecraft must operate under.
“1’hesc include both pointing, operational, and safety concerns as well as scicncc  directives ancl goals. The
application of these  constraints in the NEAR spacecraft environment at l+;rm is discussed, including son]e
sl~~clfkc strategy ltllllIeIllelltatl(>rls.

C~onlbining  the  orbit control issues with the actual dates I hat the N1;AR spacecraft arrives at Eros, a
nornirlal l]]an is produced and briefly described which satisfies all the orbital constraints and fulfills specific
scicncc  directives and goals. Some Perturbatiotls to this plan arc briefly mentioned.

1 Introduction

‘J’hc occasion of tJIC first asteroicl  orbiter has forcecl thought to be given to the interesting prob]ern of
satellite c]ynamics about asteroids, speciflcal]y in the case of the N 11A IL )Ilissic)n of tile dylia~nics  of
the NII;AR spat.ec.raft about the asteroid Eros. The theory c,f asteroid orbiters shares solnc silnilarity
with traditional theories ofplanctary orbiters, yet it is also lIluch richer in Irlally  instances. Ofspccific
interest are r-cgilncs  of ]notion about an asteroicl which arc chaotic with a ti~ne scale on the orcler
of days, allowing for such effcc.ts to be seriously consiclcrccl  and consciously avoiclecl in deriving the
control l) biloso])hy  of tllc orbital phase. ‘1’lIc’  cxistmlcc of such clynarnics  WM cmiginally notecl by J .1<.

1



,. .

Miller of the Jet I ’ repuls ion I,ab ill the 80’s, arid Ilas IIiore rccfntly been invcstig:itcd in detail I)Y

licferet~c[,[[~  llallvi[~ca~l  ct al.] and [Schemes].
III order to develop a robust  and safe orbital plan  for the NEAR  Inissiolk,  it is itnperative that,

the genera] clyna[nics of such  an orbiter be understood aIId that the orbit COIItml be applied with tbe
natura l  dynatl)ics of tlIc system in Inind, so as to avoid dangert)us or opcratiol!ally  intensive situa-

tions. ‘1’he current,  paper gives a brief  summary of the r~lcvant  ~iynalni~s  Wllicll will be encountered
by the N E A R  spacccraf[  at lros. It also reviews the current orl)it  control colls(raints  and discusses
bow they will he il[l])lenlentcd  during c)perations. Finally,  it pl escllts  t hc [lo] rlinal mission platt for
orbital ol)cra(,iolls,  as WCII  as a description of this plan.

%ction 2 lists  the nolninal  parallletcrs of interest for the NIIAR spacecraft dynamics at Eros,
For the spacecraft these include the spacecraft mass and total ~)rojectcd  area. 1 ‘or the asteroid ICros,
these include its orbital ele~llcnts  and its predicted size, clcnsity and rotational dynamics.

Section 3 discusses the dynal[lics  the spacecraft will encounter WIICII  further than w200 k[ti
frotn l;ros. ]’or such a s]nall central body, the solar  tide and solar radiation ]Jressure  become
significant  eflccts which lnust  be properly understood ancl modeled. ‘1’o])ics  of discussion include

]c)ng  terlll  stability of the N14;Altspac~craft  in afar orbit and a direci  collll):lrisc)n of the difl’crent
perturbations acting on tile s])ac.ecraft  orbit. Sectiorl 4 discusses the dy~lamics  tile spacecraft will
encounter when close to lCrcE. ]nc.ludcd is a discussion on I)eriodic orbits oi-l)its  stable against
crashing on tbc asteroid, resonance effects aJ]d SOJlle  grmcra]  J“CSUltS OJl K’trc]gradc  orbiters. ‘1’br?
corl!l)]icatcd Ilaturc  of the dynamics in some orbital r~girllcs  is tligbligbtcd,  and attempts are I]lade
to map  out  rcgiolls where the NEAR  spacec.raft  can orl)it  in relative safety.

%c.tion 5 lists  the heuristic mission constraints for the .NEAR orbits] l)~ission and proceeds
tocletail howcaclt  will bcmet. Tbc  control problem can bcdecolnposed intocontrol of the asteroid
inclination, node and radius. SpccifLc methodologies to be USC(I  are discusse{l. Some of tbc details
of tilning control arc briefly lnelltioned  M welt. se~tioll  6 Presents  the current, nornitlal mission p]an
which ad bcrcs to the stated mission constraints and satisfies tllc nollLillal sciellcc requirements.

2 Spacecraft and .Astoroid Definition

As this paper deals with aspccific mission, with a welt dcfine(l spacecraft al]d a fairly well defined
asteroid, it, is possible tcj irlject real numbers and parameters into tile discllssion,

2 . 1  N E A R  S p a c e c r a f t  P a r a m e t e r s

At launch the NI;A1tspacccraft will weigh in at approxinlate]y  805 kg. IJuriflgtbe inter-planetary
cruise and I;ros rmdezvous,  the craft will usc the nla~c~rportic~n  of its fuel and its massat tile start
of orbital operations will be al~proxir[lately 500 kg. ‘J’Jle total area of the ?JI’MR  spacecraft solar(
arrays :me 9 Inz and are mounted on a bus of approxirllatc  area 3.24 J112. ‘l’l(is leads to an estimate!
of the total spacecraft area slll~jec.t tc) solar  radiation pr~ssurc (SRI’) of 12.24 m~. A pararlleter  of
interest is the spacecraft mass to area ratio, desig[latcd  as B. For the Nl;A}{ s],acecraft  after l;ros

2 ‘]’his ]~ar:~lllctcr  drives the effectrmldczvous  this parameter will have a value of l) % 40.85 kg/)n  .
4wllicll the . ltl’ has on the spacecraft orbits.

2 . 2  E r o s  P a r a m e t e r s

‘]l]lc  orbital paralncters of l;ros have been dcterlnincd by YcoIllans as (lil~lr[}’eorllalls]):

(1 = 1.4583 AU (1)

c = 0.2230 (2)

i= 10.8308 (leg (3)

w= 178.5677 deg (4)
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o == 3 0 4 . 4 4 0 5  clcg (5)

7: = 1996 hiarch  12.S183 (6)

SoIne  additional parameters of the orbit are the orbital period, 7j~ = 1.76 years, and the radius of
perihelion and aphelion, 1.1331 and 1.7835 AU respectively. Finally, the allguiar  rate of Eros about
tllc sun, N’, will vary from 1.8255 x 1 0–7 racI/s  at perihelion  to 7.3685  x 10-8 rad/s at aphelion.

~’he actual size, shape, density and rotational dyna~llics of I;ros arc currcmtly  unknown, a]-
though there  arc bounds and estilriates  on all of these  parameters. Itcferencc  [Yeo]nans]  gives a shape
bound on Ilros of 40.5 + 3.1 x 14.5 + 2.3 x 14.1 + 2.3 km, and a spin period of 5.27011 hours with
its rotation I)olc located at an eclilltic. latitude and longitude of 110 aljd 16° respectively (B1950,
uncertain by a few degrees). These nominal numbrrs are used thro@~out this pap, except where
noted (in the scctiou  on periodic orbit fatnilies and zero-velocity curves), As Eros is classified as
an S type asteroi~ a reasonable supposition for its density is 3.5 g/crn3, alttiough  this value is quite
uncertain. C;iverl these,  all that is nccdcd to finally  specify the I(hm  Ioodcl is a shape. A tri-axial
ellipsoid model  is assumed for most computations with the nominal size as given by Yeornans. For
t,hc computation of the zero-velocity surfaces, periodic orl)its and ecluilil)riurtl  points, the Af’1,-O
shape moctel for Eros is used. This shape model is briefly descril~ed in %cticm 4. Once the actual
I;ros pararrlet,ers are determined, they will be substituted irlto the analysis.

I{ased on the expected values of Eros size and density, the gravita(  ional parameter used in
this paper is:

p = 1.012 x 10 -3 krt,3/s2 (7)

l’he  most in]l)ortar~t  terms of the harmonic expansion of the gravity field correspond to the second
degree harlnonics,  C720  and 6’22. For  the tri.-axial ellipsoid J ros model these are:

C20 == --36.3/~; (8)

C22 u 17.9/1, : (9)

where VO is an arbitrary normalizatiorl  radius

3 Spacecraft Dynamics Far From Eros

When sufhciently  far from F}ros (> 200 km), it is acceptable toapproxirnate  the asteroid as a point
lnass(for modelingt hegross  properties of the dynaloics).  N’ote that sorlmc~f  the lower’dcgree gravity
harmonics ~nay be detectable at these distances, but they have nc)nlajor affect on the trajectory.
F’or  studying this case, c.hoose preference framecerltered at Eros and rotatingso  that the –X axis
always points at the suli. choose the Z axis aloi~g tile angular roonlerlturn  vector of Eros’ orbit
about the sun, and then choose the Y axis according to tile right-hand rule.

III this regime, the significant forces arise from the attracticm  of I;rc~s, tile tidal force of the
sun ancl the solar radiation pressure (SR1’) acting on the spacecraft. Assllr[lillgthat the spacecraft
solar arrays are orierlted to face tile sun the equations of ]Ilotion can I)e stated as:

.
X -- 2N’Y = -.$ + 3JV’2X  i g

+ + 2N’X  . . . $?.
r

i =- --$$ h12~

(lo)

(11)

(12)

where g is tile SR1’ force clelivcred to the spacecraft, A“ is the angular  rate of l{~ros about the sut]
and R is the radius of the spacecraft from the cerlter of I’;ros. ‘1’he SM’  acceleration is coniputeci to
be (I~l;l[Scheeres]):

9–
—. 1 . 0 8 8 0  x 10 - 1 0– ] km/s:~7<2 ( 1 3 )
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w]lcre ‘R. is tile r a d i u s  of Eros’ cmbit at)out  thc sun in ALJ.  FOI t,hc NII~A  I{ sl)accc.raft  at [~ros t h i s
paranictm will range from 8.47 x 10--” kl~l/s2 at peri]mlion to 3.42  x 10- ‘ 1 kl[l/s2 at aplleliol}.

3 . 1  S t a t i o n a r y  Pointjs

Of interest for this dynalnical  sys~eln are those points where a sl)acccraft  would  ideally retilain  at rest
if placed thrrr  with 110 relative velocity. 11) tlic absence  of ,Sltl’ forces, the tidal and ICros attraction’
forces will caiiccl out, at ~tic locations:

(14)

w +2163.494  –+ *3961.177 kln (15)

where tlhc range  depcllds  01) whether Eros is at perihelion or aphelion.
‘1’]le addition of SR1’ forces  modifies tho location of tllf.:sc stationary l)oillts. ‘l’lie ccluation

froln which to solve for tllcm l)ecoIiIes:

(16)

(17)

At pcrillclioy  the parameter c == 0.3916, while at aphelion the ]Jaramelcr  is c : 0.5301. Analytically,
the locatiori; 6f these new points arc:

(1s)

which is accurate to the order of 10 kilometers. Solving the cquatiol)s  exactly  yields the following
statio])ary  I)oillts for the Lkos- NEAR spacecraft system:

{

1915, –2486  km at perihelion
x.$ =

3371, –4799  k~n at aphclioll (19)

l’hese  stationary points are, of course, unstable and would require some sort of closed loop control
for the s])ac.ecraft  to mnain in their  vicinity. Fkoln  a mission poiut of view these solutions are
not necessarily interesting either. q’hey  are useful in that they  characterize where the solar tide,
gravitational and S1{1’  forces are equal, and hence deli~leate  where the ~~ros  gravity field begins to
do~ninat,e.

3 . 2  Stability o f  S p a c e c r a f t  orbits

A question of int,ercst is whether or l(ot a spacecraft is bound to an asteroid for a long tilne  duration,
or if the spacecraft ~nigllt escape over a fiairly  short time if Iiot controlled. ‘J’hese qucstic)ns  may be
auswcrcxl hy a quick study of the zero-velocity curves of the current systcr) I.

l~irst note that lquat ions 10- 12 have a Jacobi integp al, stated as:

(20)

w]lcrc CJ$ is the Jacobi  constant and T is the kinetic energy of the spacecraft with respect to the
current  coordinate frame.  ]n actua]ity  the angular  rate N’ varies in time  afld thus the integral does
not truly exist.  ]Iowevcr,  ow:r shor~ periods of tirm it is useful to approxi~llate  the time varying N’
with a corlstant  value.

‘JIIIC  zero-velocity curves are fc)und hy ecluatillg the kinetic cxlergy 7’ to zero and solving t]ic
resultant equation. Sm I“i.gurc 1 for a projection of the zero velocity surface into the X-Y plane for
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F’igure 1: Zero-Velocity (~urvcs  in the X-Y  l’lall(

the current case at I)criapsis. ‘1’hc locat,iolL of the two stationary orbits can be clearly seen in this
figure.

Given a spacecraft initially close to the asteroid, a criteriorl  for it to relnain  close to the
asteroid and not escape is that its Jacobi constant, have a value L’s > L’i , where L’+ is the Jacobi
Collstallt Oft}lc st, a~iollarY ~]oillt along the +X axis, When this inequality issatisfled, the spacecraft

catlnot  ]cavc the vicinity of the asteroid ancl escape; whe~l it is not satisfied, tllc possibility exists,
At the stationary points  theJacotli constant can beaI~prc)xi~llatecll~y:

~N’2X:;  3: g~~> +  ~c&=2 (21)

For the NI;A1t-llros  system  the value of this constant, {;+ ranges fronl 5.73 x 10-” 7 k[n2/s2 at peri-
helion to 3.48x 10 -7 km2/s2 at aphelion.

At Eros rendezvous } the NEAR  spacecraft will initia]]y  orbit Ems in a circular orbit close

to the terminator (i.e. close to the solar plane-of-sky). Thus  it is of ir(tcrcst to app]y the capture
criterion to such an orbit. Assume a circular orbit  with its orbit atlgular  rlioll~cllttlt~~l~oir~tec] to}vards
the sun. “1’hen  the Jacc]bi integral can be written  as:

~$ “ yaw 1
A]~I)lyi[lg tllcstal]ility criterion yields the inequality:

2(;+ p < 0
a3+ ––~a -- N(2——. —

N’

(22)

(23)

It is easy to see that there  is a unique positive value of a below wfllicll  tllc inequality is satisfied.
For our situation, this value ranges from 865 krn at pcriapsis  to 1432 ktll at al)oapsis.  Note that
the initial NEAR  orbit is circular at 1000 km with Eros approachillg  pcrihclioll,  indicating that, if
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left unattended for a sllfficiel~t  period  of ti~~~$jtlle spacecraft nr;ty cscar}c fro])]  tllc vicinity of ]tros.
Nominal mission plans o1llY call for t}lc spac~craf~ to lJC at this radills  fcm a period of a few weeks
whi]e the tilnc scale for Ilustable  behavior is 011 tile order of llll[ldrecls  of days, tnaking  this type of
instability controllable and not an issue. Of greater concern is f hat the eccentricity of this initially
circular orl)it approaches 1 after approxilnately 1~0 days (see llefererlc~:  [Sclle~res]), placing a finite
ti~ne on how long such an orbit  CCIUICI be left uriatterlded.  Note t)lat an orbit, in the solar plauc-of-sky
with a se[ili-rllajor  axis of 1000 k~n, all eccc~ltricity of 0.794 (20(; x 1794 klri) a[Id a properly chosen
argulocult of pcriapsis  will remain trapped at Eros irl the solar plane-of-sky for an arbitrarily lorig
perioc]  of tillle  (see ILcference [Schems]). All fcJlowitlg orbits M ill be at radii of 200 km or less and
hence for the rcnlairrder  of the IIlissioll  tile NEAlt spacecraft WIII  be definitely trappec] at }~ros.

3 . 3  Comparison  with Gravity  H a r m o n i c s  E f f e c t s

Of interest is the efl’cctive sphcm  of influence of the vru-ious  pcl turbations ac[ilig on the sl)acecraft,
the main ones Iwing the solar tide, solar  radiatio~l  ~~r~ss~lre al~[l tile gravity llarlllo~~ics  of I(~ros.  A n
efficient way in which to lncasure tile= effects is to Conlpare IIOW these diffumt forces affect the

[<-,spacecraft orhit, notably how they .gffect  the scc.~llar rate of change in the ortjit [iodc and periapsisi
]n general, far froln l;ros  the tidal force will dolniriatej  while at lnterrnediatc  distances tile Sltl’ force .,,
dotnillatcs and at C1 OSC distances the gravitaticlnal harlnonics  dominate.

III RILk’Ec.heercsl  some explicit forroulae  which compare these effects are given. To loake the ./.
proper C.o]nparison  the “following constants must be cornput,ed

(3, =: ~N~ a3/2 S c a l a r  Tide  Effect

(;g ,, 5~fi SRI’ l;flect

(;j ,= V?:&’; Gravity IIarmoni{s  Effect

where each of these coefficients measures the potential secular rate of tllc IIodc al~d argument of
~)criapsis.  Of intmest are the ratios of Ct/C’g al~d Cg/Cj WIIiCII compare the solar tide to the SRI’
and the SRI) to the harmonics, respectively. Itvaluating these ratios at Eros perihelion yields:

~12*
[;*/cg ,, —-

2g

-- 1.97 x  10-4[/. .

(25)

(26)

=: 3.48 x 10-9(,4

Equating  the ratios to 1, we fiud that the SRI’ has a donlirlalll  effect Over the sc)lar tide for (I < 50&t
km, and that the gravity harmonics ~las a domit~arlt  effect ovtr  the SRI’ for n < 144 km. Note that
there is a relatively long period of time when the spacecraft orbit radius is at 200 and 1000 km,
implying that the S1{1’ effect on its orbit  will be the largest llerturha  Lion Cluri]lg this time.

4 Spacecraft Dynamics Close to Ems

Given a gravitational field and the rotational state of the r,roclcl, the equations of motion of the
s]~accc.raft lnay be written down. ‘1’hc most cfflcimlt exprcs:.iou  of these equations is given in tllc
body-fixed fralnc  of the asteroid. Given an integratect  result ill this  frame, it is fairly easy to transforln
hack to the inertial fratlle.  ‘J’lIc benefit  of this formulation is that no rotatiorlal  transformatiorw  rr]ust
be rllade to evaluate the accelerations due to Eros’ gravity.
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Allowing for a genera] dctermiination  of the rotational dynamics, the body fixecl equations of
lnotioi] for a slnall particle are (Grecnwooci, 1965,  1)1~ 50-51):’

i+2Qxi. +Qx(QXl’)+f2 Xr =  Ur (27)
. .

where r is the bocly-fixcxl  vector from the asteroid c.cntm of mass, (--) and (-- ) are first a)]d second
tillle derivatives with respect to the body-fixed, rotating Irame,  Q is the instantaneous rotatiol]
vector of the body with rwspcct to inertial space and has magnitude Ifll = w, and (Jr is the gradient
of the gravitational potential.

Note that this fortnulation  allows for a non-cons  tarlt rotation rate of Eros. Should there be a
nomprinci]~a! axis rotation state ~thc tenor of the d.vnamics will be quite ciiflcrcnt in some instances.
]~irst  of al], since the asteroid will be following the dynat] lies of a torque-free rigid body rotation
state, the angular velocity vector Q in the body fixed fralne  \vill be periodic, and hence the equations
of Inotion  will be time-periodic. Other  consequences are that the Jacobi integral will not exist, and
Iicitther  will the classical stationary orbits (they transfor~ll into periodic clrl)its). ‘J’here  are also a
nulnbcr of other ilnportant consequences, some of which tend  to stabili~e  the dynamics and some of
which tend to de-stabilize tile dynamics, but these are Ilot discussed here.

It is expected that Fhos will be in near prirlc.ipal axis rotation, thlls we assume that Itil E O
a n d  IQl = w = 3.3118  x 10-4 radians/second (cc)rrespond  in.g to a rot at ion l)criod of 5.27 hours).
];quate  the direction of rotation with the z-axis and fix the x-axis  along the smallest ~norllent of
illcrtia;  tile dcfinitiorl  of the y-axis follows by the right-hand rule. ‘1’11? equations of motion in scalar
form are then:

4.1 Jacobi  I n t e g r a l

Note that, due to the assu~nptioa  clf a uniform rotation ratt a Jacobi integral exists for this problernj
independent of the degree of irregularity of the gravitatic)na]  field. ‘Jo estal]lish  the integral’s exis-
tence one need only note that, the equatio~ts of motion in the unifornlly  rc]tating,  body-fixed frame
are ti]nc-invariant. ‘1’he Jacobi constant C.’ is defined by tl)e relation:

c = v(x, !/,2) - T (31)

where

1V(z, y,z)  == ~w~(z~ -t ?42)+U(Z}!L2) (32)

is tlie modified potential and

T == ; (i?+ yz -1 2) (33)

is tllc kinetic energy of the particle with respect to the rotating asteroid. (~iven any initial conditions,
tllc constant (7 is conserved for the ensuing rnotic]n.

4.1.1 Zero-Velocity C; UNJCS

‘J’]te z~.ro-velocity surfaces are clcfincd for this system by the cquatio]!:

v(z, y,2) := C

7
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which dcflnes a 2-dill tensional  surface in the 3-dinlcnsicjrlal 2“ — y — z sI)acc. lf’ol]owing  is a section of
the mro-velocity surface taken  alowg the .2 =- O plane  using the AI’lJ-O  Illodcl (a Iiypothetica]  IItodel
of Eros’ s]lapr  specified hy 4202 vertices ancl 8400 triangular faces). Note tlic lack of syrnmetryl

which will hi exl)ccted in the real asteroid shape as well.
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Figure  2: Zerc)-l:elocity Curve ill the x - y (2 = O) ~’lant’

Note the four areas where thr zero-velocity curves intersect or clos~ in upoII  thelosclvcs.
I.ocatcd  lime arc equilihriuttt  ~joints, which are discussed in fllrthcr  detail ill Section 4.2.

4.1.2 Staljility Against Crashing

‘1’he zero- vc]ocity curve analysis can ],rovidc a ready estilnatc t,f when the s])awcraft  is not in danger
of crast]ing olito  the asteroid surface. The criterio~k was initially derived i[l R1;17[Schccres] fol an
attracting clli~moid sllapej  but  can easily he extended to a general gravitational potential. It is
cleve]opccl as follows. lMine the equilibriuln  point alcmg the +x axis as thr +JS(addle) equilibrium
points, IL is seen that these are the first points to l,ifurcatc  as the J acol, i constant  decreases froln
large, positive values. }~or any orhitcr  with a J ac.obi constant <~ > C’:t .S, the orbit is then separated
fronl the ast,,eroicl by t}ie zero- velocity surface, which it cann~,t cross. ‘J’l Ius, ill these situations the
spacecraft is definitely stable against crashing on t}lc asteroid, although it ttlay still be ejected froln
the asteroid on a hyperbolic c,rhit. l’igurc 3 presents a c.urvc which delineates between those orbits
which are definitely stable  against crashing on the astmoid  and those whic]l  are IIo~. l’his  curve only
applies to orbiters with an inclination within N 10° of the equator.

Note ttlat this criterion only applies to direct, near-equatorial orl)its. lpor retrograde, ncar-
cquatorial orl~its  the results fro~ln  Section 4.3 apply instead, and establish a IItliforln stat) ility against

(crashing. Currell  Jy, there is no uniformly al)plicab]e  criteric)ll for the case of near-polar orbits,
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4 . 1 . 3  Rmommcc  Effwts

A simple, and illustrative, result can be derived which estilnates the cxl)ected change in 2-body
energy duc to spacecraft interaction with the 2nci order gravitational harrllollics.  ‘lTo begin the cllar-
acterizationl  express  tlic 2- bc~cly energy in terms of body-fixed coordinates and tile Jacobi integral.
l)oing’ so yields:

where tile gravitational potmltial  [J has beeli expressed as L) = p/r + El [Ii, where the [ Ji represent
tile higher orders of the gravitational potential. Differentiating the exl]ression with respect to time
yiclcls:

Substitute for i from the equations of Inotion  and simplify f o find the final result:

i
(37)

(38)
i

wllcre i.l is the spacecraft velocity vector as evaluated in i~ltrtial  space. Note that the gravitational
potclltia]s  [Ji are still  evaluated in the body-fixed, non-inertial coordinate systmn.  ‘1’his  ~nay also be
related to the ti~no derivative of the osculating sen]i-major  axis, as:

(72 = –;; (39)

e2 = g~ti (40)

9



. .

By co]nparisoll  to the standard equations for the time clcrivatives  of the osculating Clt:ttlCt](<(ILIll[  }{atl12i])
we note  tile interestil)g  relationship:

where n is the lllcall  motion, l“ is the perturbing potential and M is tl]c It IeaII a]lolnaly.
in the following discussion! wc only consider the gravity ~,otentia] of Yn(l  degree:

(41)

(42)

(43)

where the a]lgle A is the longitude of the spacecraft iri the body-fixed coc)rdi[late  syste~n,
III the following, we apl)ly this formula to the case of ii direct, cquatc)rial  elli]]tic orbit and

clerive all estimate on the total variation one may expect  in the energy arid semi-major axis from
one periapsis  passage. Assulning  that the orbital motiori  takes place in tile equatorial plane, we
have sin cr = O and cosa = 1. Next, assume  that we evaluate  the equation in the vicinity of
periapsis,  and that pcriapsis  rcrnains  corlstant  during one passage, }’erfc~rrrling  a quadrature of these
equations syrt)rnetrically  aroutld  pcriapsis  elilllinates  any ternls which are odd al)out  peria])sis and
yields (a~]proxirriatf’]  y):

where

j, =
i

p(l + e)-- .. ——. .
~;

(44)

(45)

is tile arlgular  rate of the spacecraft at periapsis. ‘J’his relation only approxilllatc  and indicates the
largest transient variation which may t)e seen in L’2, r~ot necc~sarily the total variation in one PEMS.

Several conclusions can be imlil~diately  drawn froln the~e relaticmships  l~irst, if the argurl~ent
of periapsis  lies in the 1st or 3rd quadrant of Eros, the energy of the c~rl]it \rill suffer a net decrease
and draw apoapsis  towards the asteroid. Conversely j if the argument of l)eria})sis  Iics in the 2rld or
4th quadrant, the energy will suffer a net increase , arid rosy catapult tile sr)acec raft  into an esc. a]]e
trajectory. Collsiclcr  a hricf  example. Suppose a  sl)acecrafl is in an elli~~tic c~rbit with ?>a = 90
k)n and r~, = 40 km. Assun~illg t}~at t}~c orbit is direct and “quatorial  the ~harlge in apoapsis  and
peria~)sis  is estimated to bc:

Ara  % –19sin2vkr1i (46)

Ar$) x 2sirl 2v kln (47)

SUCII  a large variation in the apses from orbit to orljit  is not acceptal]le,
Irigurc 4 plots the radius, pcriapsis  and apoapsis  of a spacecraft ill a direct, equatorial orl)it

with a peria])sis  passage through the 1st quaclrant  of Eros. F’igure 5 I)lots tl]c sartle situation except
wit]]  a periapsis  passage through the 2nd quadra]lt  of Eros. Note how tl]e a])oa])sis  cl!anges  as
expected. Iloth  results are fro~n a precision trajectory integration.
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4 . 2  B o d y - F i x e d  Periodic O r b i t s

lu a non-integrable environment such a.. .Ih-os’, it is cliflicult to come up with definitive conclusions
on general spacecraft motions. Exceptions to this arise whe]j either far fro!)) the asteroid or in near-
equatorial, retrograde orbits about t}~e asteroid. When not in these conditio~lsl  recourse Iuust be
]nadc to other approaches to build up a picture of the dynamics about the asteroid. ‘1’he computation
and analysis of body-fixed periodic orbits is the first, and sir]lplest,  stelj tow:ir-ds  understanding these
coml)licated  dyllatl~ics. ‘1’hc main intent is to deterlninc  tile stability of tllcse orbits, as this then
provides infor~natiou  which impacts the stability and predictability of orbits  it] the region of these
falni]ies.

Clear  frorrl  Figure  2 is the existence of four cquilibriu  In points about,  the A 1’1.-0 I~ros model.
At these points there will be a net zero acceleration actin?, on the particle in the rotating frame.
These arc circular orbits which are exactly synchronous witli  Eros’ rotat  ion rate. A more direct
manner of co]nputing  these orbits, or equilibrium }]oiuts, is by solving the algebraic equations:

V=(z, y,z) = o (48)

vy(z,  !/,2) = o (49)

V.(x,  y,z) = o (50)

for all values of x, y, z which satisfy them. Note that there is no a priori rlurnber of solutions to these
equations. l)cpending  on the shape  and spin rate of the bocly, there could l)e a different number of
solutions. ]t is i[nportant to note that these solutions exist uniquely desl)ite the lack of sy~utnetry
in the gravity field.

Iror the nominal I’;ros  model all four of the synchronous orbits arc unstable. g’lle two points
loc.atcd near tile ends of the asteroid are hyperbolically unstable, thus any ]Jarticle displaced from
these bocly-fixed  poiltt,s will depart from that poi~lt  on a local hyperbola. ‘l’he two points located
along the long side of the asteroid are cornplcx unstable, thus any l)artic.lc displaced from these
orbits will depart from that point on a local spiral. As all the syllclironous  orbits about Eros are
unstable (for all current ruodcls),  it may be classified as a ‘1’ype  11 asteroid (liItlc[Schecres]).

A nu]nbcr  of periodic orl]it families have been foulld for the current  h-es rnodcls. ‘1’hcse
arc collvcniclltly  split into three  main groups (not countin~  the equilil)riulli  Iloints):  direct, ncar-
equatorial orbits; retrograde, Uear-eq~latOri~Ll orbits; near-resonant, non-p ]allar orbits.
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‘Ille direct, n e a r - e q u a t o r i a l  fa[]]ily origi]]ates as a circlllar, e q u a t o r i a l  faloi]y far froln tlie
asteroid, As it ]noves to slllallcr  radii, it retains this character Llntil it bifurcates into two elliptical
c)rl)it branches. ‘1’hesc  families are stable until  they reach a radius  of approximately 37 kin, \vherc
they becolne  unstal~l~ (Reference [Scheeres]).  The  instability c~f these orbits is rather severe, as the
unstable lnanifolcls taucl to interact closely with the a.~tcroid  surface ancl cause a perturbed particle
to impact, or escape from the asteroid in a short time scale on tl!e order of days or weeks, In general,
any direct orbit with a periapsis  less than 40 to 50 k~ll shoulcl  be carefully illl’estigated  to ensure
{hat it cloes not suffer Iargc changes tc) its osculating cle[nents.

‘Jibe ret,rogracle, near-equatorial family also origilLates  ~~ a circular, equatorial fa[llily far fro~n
the asteroid. llowcwer,  as it moves to .sInaller radii, it never bifurcates in the plane and retains its
circular character until it terminates by intersection with the asteroid surface. ‘1’lJis fa]nily rmnains
stahlc up to intersection with the asteroid surface, indicating that it is an attractive candidate for

flying close to the &steroid  surface.
‘]i]le near-resonant, non-planar orbits tend to exist  cmly in the vicinity of select radii where

the particle’s period of out-of-plane oscillation is cotnmensuratc  with the asteroid rotatiou rate.
When this situation occurs, it is possible for the particle orbit to close LII)OrI itself in the body-fixed
rcferwncc  frame. ‘1’his, in turn, allOws for an analysis of the stal)ility  of this ~l]t~tioll. Ot}]crwise,  it is
clifflcu]t  to ascertain the stability of such non-planar orbits. ~’wo main fanlilim  of these orbits have
been found. One of these families eloanatjes  from the halo orbits surrouncii]ig t IIe cquilibriuln  points
cliscusscd }~reviously  and travel through polar orbits and ter]liinate  oil anot tier of the equilibriuln
points’ halo orbit. Such families remain unstable throughc]rrt, and ha}’e a r:idius of approxilnate]y
20 kin. A SCCOJ)CI  ~)air of such non-planar falOilies  haS a period  rOUghly  twice the rotation period of
Eros at a radius of 30 to 35 krll. This family remains lmsta~lc  throughcjut,  rtlost of its evolution as
WC]],  except for a sma]]  portion wheJI it retains much c)f its near- circular  c~laracter and its illc.lination
grows above w 130°. ‘he existence of this stable interval is itliportant as it ])rovides an indicatiorl

of the degree to which a retrograde, near-circular orbit may dcl~art fro]n the equator and still retain
its stability. in this instance, it appears that orbit inclinations less than 130° at an orbit radius of
~35  kln arc definitely unstable.
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4 . 3  N o n - S y n c h r o n o u s  Motions

WhcJI in al? ,,~;l)it far from the asteroid or in a rctrogradcj near-equatorial orbit,  there  is a simp-
lification which can be introduced into the problem. In both  of these co[iditions  (as discussed in
REF[Schcercs]),  the gravitational potential U may tw replaced by a rotationally symmetric potential
without c.o~llpronlising  the nature of the dynamics. ‘Ibis si~lll)lifies  tile mlalysis  a great deal, as then
one Inay refer to the theory  of planetary orbiters for which there is a wcaltl)  of literature (Reference

.,
/ [1)

111 such an environment, it is fruitful to describe the orbits in tcrlns  of averaged osculating ele-
]nents,  as tbesc  contain most of the information and dynami(s  of interest. ‘1’l}en  it is well established
that the serni-rnajor  axis, cxcentricity  and illclinatiol~ remai]l constant on average with short period
oscillations. ‘J’he rctnaining  elements; the argument of l)eria}lsis, the longitude of the ascending node
and the epoch of periapsis,  contain secular variat,iorls. Retair,  ing only the lowest degree grritational
para~net,er  L’20 = –~z, the dynamics of these elements are described by (1{ ltl’[])anby]):  I

cm
–Cj cos i-z “ (51)

du
2;  =

‘“c’” [:si’pi--21 (52)

ciMO—— = [2’’’2’-]1,,-. (,’j fin:;? ! ,“ (53)
dt

where

311 J2 If
Cj = - -- —--

2p2
(54)

(55)

p = 0(1 -- (2) (56)

For the nominal Eros tncldel at an orbital radius of 35 km (and in a retrograde orbit), the value of
Cj is 33.8 degrees/day, at an orbital radius of 50 km the \aluc of Cj is 9.7 deg/day,  Thus, when
within a few radii of Eros, the secular change in the node and arguJllel)t  of periapsis  may be quite
large.

5 Orbit Control

The orbit control philosophy on the NII;AR  spacecraft may be broken into two phases. q’he first
phase clcals with orbits t}~at have pcrial)sis  greater than 100 km. in this  rrgilne  traditional targeting
approaches can l)c used, and these should suffice to control the orbit to the desired level of accuracy.
l’he  second l)hasc concerns itself  with orbits that liave their periapsis  witbi]l 100 k]n of the asteroid.
in this rcgirncj special care must often be taken in designinp, a control nletllodc]logy  and in targeting
the spacecraft Inaneuvers  to achieve specific spacecraft states. ‘lihe fol]owi)lg section deals exclusively
with the control of orbits when within 100 km of tllc asteroid.

5.1 Mission Constraints

(lnce  the spacecraft achieves orbit about Eros and the science pbasc of tile mission begins, there
are a nulnber  of lnission design constraints which must be adhered to. ‘1’IICSC  constraints drive the
control of the orbit during this phase and place restrictions on what orbits are flown and when they
arc flowl).  A heuristic statelllent of the mission cles.igll  cons~raints  follow:

● ‘I’l Ie spacoc.raft orbit s]lould  bc safe and stal]lc for a t imespall of weeks
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● ‘1’he sl)acecraft  orl)it  norlna]  should lie within 30° of the l;arth wltcn ill low orbits  (e.g. 35 k~n
radius), and Iic within  20° of the Barth when in Iiigh orbits (e.g. 50 kln radills  and highm)

● ‘1’hc spacecraft orbit normal should Iic within  20° of the .Suu for the first 100 days of the science
I)]lase  IIlissionl and lie within  300 of the Sun for tile remainder of the nlissioll

● Nor[llally,  t}lcre shall  he IIO iess ttlan 7 clays between maneuvers

● ‘1’IIC total orbital ~llission  phase AV expenditure shall relliain  less tllall  100 IIi/s

. ‘1’IIC  spacecraft shall orbit, as low as possible (nonlinally  at a 3.5 kl]l radius) for as long as
possil)lc without< violailing any of the above cons(rairlts

‘1’llc two constraints on the spacecraft orbit norrrlal are actually to Im al~plicd to the spacecraft
orient  atio]l itsc]f. Ilowcvcr,  assuming a nominally  nadir  pointilig  spacecraft, ttlcse constraints lnay
be apl)liccl to the orbit norn)al.  ‘1’hese  ]nission design ~onstraillls  can be rc:dimd  I)y controlling the
spacecraft orbit, inclination, node and radius. ‘1’hese  arc discussed in nlorc  detail  below.

5 . 2  Inclination Contro]

‘1’hc first constraint 011 the c]rbit is that it be safe a~ld stable during the nlissioll duration. ‘1’his
constraint is Inost, easily met by specifying that the orllit  Inust always he retrograde wit}l respect to
the asteroid rotation pole. l~lying tllc orbit in this  mode  will usllally  e~lsure that the spacecraft will
be ~lo~l-sy~]cllrotlolls  with the asteroid rotation rate and nc]t afl’ectecl by the instabilities asociated
wit}] direct  orhits. ‘lo keep this constraint throughout the mission will  require that the spacecraft
orhit bc chang’ec] hy 180° arolllld  the mid-point of the lnission I at a nominal cost of 8.3 In/s). “1’llis
is necessary since the rotation POle of l{lros lies in its orbital plane  and since LIIC  orbit normal  must
follow tile Sun atld I’;arth. Note that WhCII  tile spacecraft is in an especially C1OSC c~rbit, such as the
35 k]n orbits, the inclination restriction must be tight enecl. nom analysis il]volvi~lg  pcriorlic orbit
fami]ics,  it is sccu that, this constraint is i > 130° at l~ast. At 50 km c]rbits, the constraint call be
relaxed to i ~ ’30°.

Following this retrograde strategy s}lollld  also ensure  that the inclinai  ion, selrli-major  axis
and eccentricity will suffer no Iong-terln  seclllar  effects, although  they r[lay  have sizable short period
oscillations.

5.3 l>lane-of-Sky  C o n t r o l

Forcing the orbit plallc  to COIIIPIY  with the two planr-of-sky  constraints cc)nsulnes ttlc majority of
effort during the orbital phase, and drives the mission profile for the rtmst part,  A plane-of-sky
const, rai]lt angle of iC forces the orbit IIorrnal  to point within ic degrees c,f the body in question (the
Earth or Sun). LJnder the natllral dynamics of the orbit  plane about the asteroid, the orbit llorrl)al
will l)rec.ess shout the asteroicl rotation POle and usually  will leave t}le const,raillt  cone after a w}li]e.
]’rior to this violation a plane change lnaneuver  m~lsl  be performed to reset the orbit normal within
the co~lstraint  c.onc again. ldcally,  the plane change Illancuver  will ~Lot chatkgc the orbit inclination,
but will omy rotate the argument of the ascendirlg  nc)cle,  as Irwasured in the asteroid equator.

Oftml, in planrtary  situations, a plane change lnaneuwr is executed so as to lninilnize  fuc]
collsuruption.  ‘1’his is usually possible by raising apoapsis  to a higher altitude and effecting the
cllangc there, where the fuel cost is less. In the NII~AR mission apl)licatio]l  such a fuel bptirnal
SCIICIIIC  is not followed for several reasons, the foremost being that the tc)tal fuel cost for Inaking a
plane change mancuvet’  is fairly small due to the small speeds of the spacecraft about the asteroid,
and that, such an ill~l)lc~[lctltatiorl  wo~lld waste precic)l~s time and make the cmbit operations phase
IIlorc illtensc. ltatllcr, in clcsigning tile orbit  plane ccmtrol it is the lllancuver  frcquellcy wl!ich i s
minilnimd  (i.e.

)
the tilllc  between maneuvers is maxitnized) ‘1’his  is cflccted by understanding

tlllc orbit l)lane dynatnics  and meting them so that tllc tilllc  to the next, cc)listrai[lt  violation is
tnaxitnizcd.  ‘1’his apl)roac.h is briefly cliscussed  in Lhe following, for both one and two constraints.
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5.3.1 Sin@c Constraint

l~irst clcfinc the orbit liornlal  vector and the constraint vector:

lI)L = sini2sini~ –- cosf)  sin iy-F cosi.i (57)

111  = sinfll sin ili — cosfll sit) ilj+ cosil: (58)

where i, j and ; arc the unit vectors associated with an equatorial, i[lcrtial  coordinate system
chosen so that the asteroid rotation ~)olc lies alonF, the i direction and the equator lies in the i’-~
plane, Q is the orbit node, i is the orbit inclination, fll is the node of the constraint vector and
il is t,lic inclination of the constraint vector. Associated with the constrai[lt  vector is a constraint
angle i~l which we currently assrrlne to be < 7r/4. The  plane-of-sky constraint then states that
the 6rbit  llornla]  vector lnust  lie witbin an angle it:, of tllr constraint wctor Ill, defining a conc
ahout the vector  Ill. ‘1’he  plane-of-sky inclination of the spacecraft orbit  is the angle P, defined as
cos 1) = u~ ~ Ill, or explicitly M:

C.os 1’] :. sin i sin il cos(QI -- Q) + cosicos i] (59)

l>or t}lc Illornent  ignore  the dynan]ics  of the cons t r a in t
tlic sky. ‘J’hen tl)e only significant dynamics to consider
behaved) is that of the orbit nOde: ~ = QO – t~j  Cos ~.
flo == Q1, tllerchy  silnplifying  thr expression:

vector, which is i]] gyncral moving across
(assuming that tllc orbit is stable and well
Wt. can CAOC,SC, without loss of generality,

Cos r] =-. sin i sin il COS(t  C;j cosi) + cosicos il (60)

Note the following incqua]ities:

COs(i + il) < Cos PI < C(ls(i – i]) (61)

‘1’hen the constraint cone is clefincd  by t,hc condition:

ic, > P] (62)

or

Cos icl < Cos PI (63)

Cos ic!l < sin i sin i] cos(t Cj cos i) + cos i cos it (64)

l~or this inequality to be satisfied tbc inc]ixlation lnust  lie ill the range:

i E [il –icl, il +~c,l (65)

lf i is not in this interval, then the constraint is never met. Given an illclillatiotl  within this interval,
the constraint Inay bc trivially met- hy setting t = O. Ilowevcr,  as ti]ne progresses the inequality [[lay
again be Violated due to the secular change in t,]lc node.

Refering  to lnequa]ity  61, we sce that if

Cos i(,., < Cos(i + i]) (66)

the c.c)nstraillt is never violated and the node cam move through a 27r rotatic)n without ]caving tbc
constraint cone. l’; lsc, if

Cos(i + i] ) < CCE k, < Cos(i – il ) (67)

the constraint will be rwac}lcd at tirnc L“:

[

cos it,, -- cos i cos i]
Y’(i)  =:- ~+=-;  arccos - - —  ~.~j~----- –

1
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‘l’tlcn,  ~~erfortning  a [Ilallcuver tc) place the orbit node at, (21 + (;j cos i7’, tile til[lc until tile constrair)t

is violated again is 2~’. “l’husj to  maxilllizc the time between nlaneuvcrs  it is tlcccssary to Inaxi Inizc

ttlc value of 7’ with respect to inc l ina t ion  i. N o t e  t h a t  the c.ocfhcicnt  CJ a d d s  n o t h i n g  t o  t h e

problcm  allcl can be igllorccl, iml)lying  that the optitllization 1s ptlrcly  gcorllctric  and involves no
physical quantities

‘1’IIc procedure for the optil[lization  is sketched  out  belolv. First, if 0,7r/i’  or T E [iI -- it;, , il +
i~,], tl]c*, the ti,t,c optil[,a] i n c l i n a t i o n is whichever of the three lie in tlie illtcrval.  in all three

cases tile orhit norltlal  re]nains  fixed in space, and tllc constraitlt is satisfied urlti] the constrairit
vrctor  111 I[loves sufhciently.  If neither of these  situations occur, theu  the fl][lction 7’(i) Inust h e

maxilllizd  w i t h  r e s p e c t  t o  i n c l i n a t i o n  i . This is a fairly simple  procedure an{l requires the solution
of tH’/t~i = O. [Jpon sollltiol], we have the time-optilual inclination i* a~id the [Ilaxi[[lunl ti~ne 7’*

over the possible values. ‘1’]Ius  the orbit<  plane normal vector which nlaxitrlizes  the tilrle to tile next

tnaneuvcr  i s  sl)ccified  I)y the irlclinatiou  i“ and  t he  n o d e  !2”  = fll + (:j cm r’”1’”, l e ad ing  t o  the
ol)tit[lal  orbit I)lane norlnal:

11; == sin f)” sin i*:t -- c.os f)” sin i“,v + cos i“i (69)

A further  result  should also he noted. If the constraint ang][  it;, ~ 7r/4,  tl]cll t h e  tinle-ol)tirnal
control reduces to a series of inclinations at O, 7r/2 arid 7r. ‘1’1](’  spacecraft rclllail]s  at orie of these
incliuat,ioris until the constraint bccolncs  violated duc to the nl(jtion  of Ill. ‘1’llc’n a 90° plane  change
~naueuvcr  is pcrforuled  to the next inclination w}lich satisfies the constraint.

‘1’0  execute the ]uarleuver, the orbit must be l~ropagated  up to tile point, where its current,
or-bit plane intersects with the desired ])lane, ctefinecl al)ovc.  WIIen at tliis  intersection, a rnancuver  is
perforrnrd  wllicll rotates the velocity vector l~y an angh 2 arcsin [sin i Sill (7’~j cos i)], with a marleuver
lnagnitude of L.V = 2V sin i sin(~’~~j  C(JS 0, wh~re v is the map,nitudc  of tlie spacecraft velocity. [n

actual i ty ,  the values of il and flI vary in time, causi~lg  the al)ove  analysis to be a bit naive. Note,

however, that irl tliis  case the above approach is applicable with only slight  rllodificatioll.

5,3.2 Multil)lc Collstraillts

‘1’lIc  situatio~l  is rr]ade r]lore  difficult when ~nultil)le  constraint cc,nes exist. ‘1’hc sa]ne approach applies
in ger~eral,  a l though now the checking conditions and time olltimization is rllore difficult. i~or the
NEAR mission there are two cones, which the orbit nc)rrnal must lie in, callecl (~1 and Cz and defined
by a unit vector m and constraint angle ic, (i = 1, 2). “1’best cones corrcsl)ol)d  to the l~arth and
Sun rcspcc.tivcly.  ‘1’here arc three cases to consider here:

C1fl Cj =: 0 (70)
Cincj ~ Ci (71)

(72)

wllcrc i and j t,akc on the values 1 or 2 exclusively. Conditic)n 70 means  tl~at the constraints are
~nutually  exclusive and canuot  be Inct sim~lltaneously,  th~ls a choice must be rllade as to which, if
either, constraint is to be Illf.’t. ‘Ibis condition occurs whcll:

111 .112 < cos(i~,  -t iC1 ) (7:3)

Condition 71 Il]cans  that, cmc of the constraint con~s  lies entirely  witllirl tl]e other,  and thus the
single cotlstrailitl control  as dcscribccl  in the previous subsection can bc a))l)lied. ‘J’his condition
occurs when:

11] 112 > cos(ic,  - -  ic, ) (74)

Conclitic)u 72 lncalls  that the coustraitlts  intersect) but neither lies col[, plctcly within the
other. ‘1’lic tol)ology of the illtcrscction  of these corics describes a !’aricty  of potentially different
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shapes. It is possible, however, to find the “hounding box “ ill terms of inc.lillation and noctc, within
whit.11 this area lnust lie. Silnply  put:

c] n (:2 E 1 (75)

[

c.os 2’C. — CCIS  i cos ii
Af& = arccos _.—~ ———-—

sin i sin ii II ( n )

Note that 1 $! Cl n G in g,cneral, thus the set  1 may contai!l  angles that are not in the constraint
zone. llowcver,  these areas  tend  to bc small.

Again, if O, rr/2  or T lie within J (and more sl~ecifically within  ~:i f_l ~~j), tflerl  these are OIICC

again the time optimal solutions. If not, then  it, is necessary to maxilnize  the time which the orbit
norrllal takes  to move across the ccmstraint  interval in the nodal dimension, where this tit[!e T is
now computed as:

and wllcrc Af2i  is defined in Equation 77. In the case of a SLngle  constraint the function 7’(i) was a
continuous and smooth function of inclination. in the curr~nt  multiple corlstraint  case the function
Y’(i) is now only continuous and not necessarily slnooth  with respect to i])cliIlation.  }Iowever, it is
still  possible to robustly SOIVC  this equatiotl  for the time olltimal  inclination i* and node ~“ which
then define the new orbit plane  normal  U;.

5.4 R a d i u s  C o n t r o l

When orbiting closely to a body such as Jhos, the use of OS( ulating Keplerian elements for targeting
and orbit description is not well defined in general atld use of such elenlents  to design orbits and
execute lnaneuvers  could have negative conscqucllces. For an int~resting  example of the potential
deviation of NI’;A Ii orbits from the usual osculating Kepleriau  elements, see I“igure 6 which shows the
radius, osculating pcriapsis  and osculating apoapsis  of a nfar-circularl retrograde, equatorial orbit.
Among the  observations to make: the orbit never goes through apoapsis due to the large secular ‘
rates of its argument of peri apsis, the orbit goes throug}l  multiple periapsis passages during one

revolution, and the osculating elements have large amplitude, high frequency terms. Nonetheless,
tile orbit in question is extremely stable and has no dangw  of im~lact or escape. Similar examples
aboul)d.  ‘1’he  implication drawn from examples such at these  are that the osculating elelnents  arc
no longer reliable as predictors of an orbit’s future evolut  ion, and hence arc not, necessarily good
targeting parameters. ]lven so, the orbits still retain some characteristic features which call  be USCCI

to t argct lnaneu vcrs.
If’or targeting from a }]i,gher, circular orbit to a specified pcria~,sis  radius the following proced-

ure is usecl. Given an initial state r~, v~ define the propagated spacecraft c)rbit by r(t; r~, vO), v(t; r~, vO).
Next enforce the restriction r~ VO = O and a desired orbit plane, thus leaving the magnitude of
the initial velocity VO = Ivol as the free Ilarameter  in the targctihg problem. lkfinc the functions
i’(t, VO)  = r ~ v/[r/ anct r(t, UO)  = Irl. Now define a ]’oincard Map fro~ll i’(0, VO)  = O to t(7’, VO) = O,
and cl~oose the initial velocity v~ to solve the equation )(1’,  v~) – ?>I, I’ O where TP is the desired
pcriapsis  radius and T is solved for from the iml]]ic.it equation i(7’, WO) :0. ‘J’his equation is solvecl
using a Newton iteration algorith~n, where the ~Jartial of these functio[ls  ca[l be expressed via the
state transition matrix. ‘J’his approach diveroccs  itself from osculating; orbital elements and only ~
relics on tl)c geolnctry  of the problem. ‘1’he argument of this true pcria],sis  is controlled by ti~ning
the initial Illaueuver  epoch.
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]’igurc 6: Radius, Apoapsis  and l’eriapsis  of a near circular, retrc,graclc  orbit

once the proper  periapsis  is tar,getccl and the spacecraft arrives at this radius, it is necessary
to design the next mallcwvir  to circularize the orbit. A])proaching  this task with a traditional appeal
to osculating cletncmts  again fails to provide a very circular orbit. A better approach is to cr[nploy  the
averaged theory developed for orbiters abo~lt olllatc  bodie$.  (Rl ~F’[marly ), although this still may
not yield acceptable results. Through a variety of exl~eriIn&ts, it has been found t}iat a robust and
simple way to fLncl the proper initial conditions (the velc)city) for a circular orl)it at a low asteroid
a]titudc is to apply a least-squares approach in targeting the \relocity. Given is tile initial radius rO
and desired is to choose the initial velocity v~, s~rl~j~ct to th~ corlstrail)t  I’O V~ L- O (and Wit}l th~”
desired orbit  platle  specificcl),  such that the ensuing orbit is as circular as [mssihle.  ‘lo do so the
initial velocity magnitude vO is chosen to minimize tile functicln:

~ ~7 [r’(t, oo) - a]~ dJ=! J (80)

where a is tile circular orbit  radius desired. To perform this rninirnization  it is riec.essary  to solve
the equation:

8J =
!

7

3;
[r(t, vo) -- a]% dt = O

0 0
(81)

where the partials are evaluated from the state trar)sitic)n nlatrix. .Sce IJigure i’ for a cotnparision
bct,wccn the radii of three orbits started at a radius of 35 km in a ret ro.gracle, equatorial orbit. ‘1’hc
initial velocit,y of these orl~its was started normal to the initiid  radius, and tlIc  iliitial  velocity rrlag-
nitude was chosen hy onc of the three different rnetliodologies: local circular with no ~nodifications,
local circular using modifications from averaged planetary thmry, and the ~ltirlilnizing initial velocity

from the above schcnle.
N-otn  Figure 7 it is obvious that the nonlirlal circlllar  velocity is urlarcqltable for maneuver

design as it leads to a wIOYO variation in radius (3.5 km) ancl an effcctivc  eccentricity of 0.053.
‘1’he  averaged approach clocs better, with only a 3.4°/0 variatron  in radius (1.2 ktn) and an efTective
ecccmtricity of 0.017. llowe\rer, the least-squares allproach  yields a radills  variation of less than
0.35% (0.12 k]n) and an effective eccentricity of less than 0.003. Thus, the least-squares approac]l
yields a truly Ilcar-circu]ar  orbit. h!ore i]nportantly,  it allows for a greater (I(grec of control over the
subscclucmt or-bit.
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~i,gure 7: Comparison of initial orl, it speed valucx

With the combination of these two targeting strategies for raclial col]trol (along with modific-
ations to ttlenl  as needed), it is possible to exert a great degree of c.ontrc]l over the orbital raclius, ‘
enabling elliptic orbits will specific, targeted apses and c)rbits which are as circular as possible. l’his  ~
level of control will be it(lportant, as it implies the ability {,f navigation to cleliver  orbits to desirecl  ~

geometries ancl c.onclitions. ‘\

5.5 Uncontrolled Elements

‘J’IIus far specific mm]tion has beeIl  made of controlling foul of the six classical elcnnents:  cc, e, r’ ailci
C?. Not c.onsiclercct  yet is the control of the the argument of periapsis  w and of the time of periapsis
passage of the orbit 7:. q’hus far, there have l~ecn no specific rcquirctnents  that the argulnent
of periapsis  be controlled during the orbital phase. in far-t, Inost of the nominal science mapping
phase is spent  in near circular orbits where the location of the periapsis  vector is not a significant
consicleration.  l)uring a fcw weeks at the beginning of th(= orbital Phase and at the rniclclle of the
orbital phase, the spacecraft is nominally in an elliptic 35 x 50 km orbit. Ijuring  these times it will
bc important to carefully target the argument periapsis  so that tile orbit, periapsis  lies ahove those
regions whose gravity is to be measured. During these (mbits,  the secular rate of change of the

periapsis will be taken to advantage, as it will allow the perialwis  tc] sweep across a range of latitucle,

providing a more complete survey of the asteroid gravity fielcl.
‘J’he final orbital cle]nent  l’~, relates to the tinling of the spacecraft ill the orljit. Recwirerncnts

have not })CXII  given as of yet on the necessary targeting acc uracy needed in this element. Specifically,
if it is dcxircci to fly over a particular portion of tile asterclicl  surface, it is Ileccssary to then cont ro l

the timing of the spacecraft in the orbit as well as the orbit  plane  itself. It is usually possible to effect

fine control of the orbit timing  by adjusting the orbit  serltl-lnajor  axis by s~llall amounts. “1’here arc
pract,ica] ]ilnits within which SUCII  adjustlnents ~nay be nlaclc, however. ‘J’hus it will be ilnperative
that the orbit ti]ning  not be allowed to stray too far frolli the dcsirecl  nominal flight path. Should
this occur, either a new nominal path would be chosen Or a pair of larger  timing maneuvers would
have to be macle.
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6 Pre-Mission Planning and Plans

ColnlJining  the ahovc  lnissioll  cicsign constraints, navigation needs and scientific concerns, a nolni[ia]
mission plan IIas hccn developc{i  which takes the mission fror]l Eros closest a))pi-each on lebruary
6, 1999 through Dmwrnlm 31, ]999, tile ofhcial  end date of th( missioa.  “J’abk’ 1 (lLcferer~ce[C; l)lt])
sur]lrnarims  the major events  of t,llc nornirlal  mission l)larl  and l~ricfly illdicatt’s tfic rationale hehinci
eac}i phase.  Note that the mass and J2 term USCd for desigrling the rlorllitlal II)ission are derived
f r o m  the values  givrn  ill Rlllr[}’cornarls].

l)atc Day Description O r b i t s ,  inc l ina t ion I,cllRtl( Goals

2/ 6/99 (1

2 ;  8;99
2/22/99
3/ 1/99
3/11 /99

3/15 /99
3/22/99
3/29/99
4/ 5/99
5/27 /99
8 /  3/99
8/17 /99
8/23 /99
8/23/99

11/10/99
12/20/99

12/31/99

2
16
~~

33
37
44
51
58
110

178
192
198
198
277

317
3x8

●

(km X km ) (degr< CS) (days)_ _  — _  — — — .  .  . ~——...—.——  ——
Eros CIA Ilyperbohc

. . .

Iusertion
‘f’ransfcr
Characterize
‘1’ransfcr
Characterize
Characterize
C;haracteri7je
Mapping
Mapping
C;llaracteri7Je
Mapping
Mapping
Mapping
Mapping
Mapping
F;nd of Missiorl

1000 x 1000
1000 + 200
200 x 200
200 + 50
50 X50
50 x3.5
35 X50

35 x 35
50 x 50
50 x 35
55 x 55
55 x 55
55 x 55
35 x35
50 X50

X147
% 1:!5
~ ](,2

z 1(,8
17( I

171)
17(I

> 1 7 5  ‘1’1;1)
150- 90

90

90
l’laae-flip  Maneuver

90-) 167
>  145 -1’131)

sI18

“l’able 1: Nominal Mission ‘1’ill~elinc

Sornc of the  Inissior] suromaries  o f  i n t e r e s t  a r e :

14

7
10

4
7
7
7

52
68
14

(-!
7 g
40

11

2nd0 (;ravity

4tli0 C;ravity

C;ra\, iLy
Cravity
~;ravity
Science phase
Scic[lce Phase
Gravity
Science I’llase
Science }’base
Science }’llase
Scie]lcc  }’}~ase
Scierlce  I)llase

‘1’otal  deterministic AV expenditure is 58.2 m/s

Science days (256 total):

92 days at the 35 x 35 km equatorial, retrograde c,rbit

79 days at the  50 x 50 krn orbits (inclination fro]!]  150- 90°)

85 days at tile 55 x 55 klli orbits (inclination frolll 90 ~ ]67°)

so ciays in polar orhit, ]4 devoted to navigation gl avity lrlal)pinr,

Acldit,iorlal suh-so]iir flyover possihle  during plane flip maneuver (around day 198)

Gravity  Mapping perio(is:

1 week at 50 x 50 at start of mission

I week at 35 x 50 with periapsis  10° ahclve the equator at start of loission

1 week at 35 x 50 with periapsis  10° below the equator at start of rllission

2 weeks at 35 x 50 polar orbit with peria})sis  at ]Iigh latitudes

]]) irnplcmcnting  the IIlission design constraints it was found that tllc 35 x 35 ort>it,s were only
feasil)lc WIIC;I  tile Sun and l’~arth vectors lay clos~’ to the rotation l)olc of 1 ;ros,  and the sllacecraft
could fly in a near-equatorial orl~it wit}lout  having 10 perfor~ll  active rllalleu\’crs to control the orhit
nocle. Should the spacecraft perforln  s~lch maneuvers while at this altitude, the constrairlt  orl the
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malleuvcr  frequency woulcl he violatc~.  which would in turn impact the ol~~rational intensity of the
Inission during this phase. q’he dates  of these two periods of 35 x 35 orbits are from 4/5/99 through
5/27/99 and from 11/10/99 through 12/20/99. Tlie initial period is shortened sorllewhat  from its
poterltia]  length due to navigation activities necessary to su}, port a transfer to such a low orbit. AU

earlier arrival date would alleviate this penalty and add up to 15 days at LIIC low altitude. Should
the actual rotation pole at Jros be significantly Clifferent frolll the current llol[lir)al value, the mission
tilneline  lnay be significantly perturbed. Figure  8 shows the Sun and Earth inclination as rlleasured
froril the rotation pole of l~ros. A necessary condition for tile spacecraft, to fly at the lower altitude
orbits without having to make frecluent plane changes is that both  the Sun aud Earth lie witbin
t,hcir constraint arlgles it-; or n – r’~ of the ltros  rotation po]c.
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]Jigure  8: Sun and F;arth inclination with res}, cct to l;ros) Rc,tation  l’ole

‘1’tlerk  are a variety of science issues and concerns that have not been dealt with to date. l’hcse
include rllodifying  the orbit inclination during the 35 x 3501 bit phases to allow for different viewirlg
geolnetrics,  or corlsidcriug  what ~~ossible off-naclir  pointing c<mstraints  apply  to the spacecraft during
the mission. While in the 35 x 35 orbit phase, it costs x 9.4 crrl/sec for ever-v degree of plane change,
yielding alnple  margin for a variety of plane change maneuvers at this altitude, if desirable. “1’here
will still  be time constraints on the frequency of such maneuvers, and sortie assurance must always be
present, that the spacecraft, orbit will in fact be stable at the desired itlclirlation/altitude colnbination.

7 Conclusions

g’he NIIAR mission to the asteroid IDros  will provide a challenge to traditio]lal  approaches to or-
bit, control and targeting. lly flying in such a dynainic  [nviron~rlcnt, ol)portunities  to fllLd new
phenolnenon  and to cornplcrncnt  existing understandirlg  of orbital clyna]nics  will abound. Chal-
lenges will assert themselves in lnany forms, fron) srrj,port iug scientific goals to safely controlling
and navigating the spacecraft in its orbit.
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